Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Neurosci Res ; 188: 51-67, 2023 Mar.
Article En | MEDLINE | ID: mdl-36152918

Sleep scoring is one of the primary tasks for the classification of sleep stages in Electroencephalogram (EEG) signals. Manual visual scoring of sleep stages is time-consuming as well as being dependent on the experience of a highly qualified sleep expert. This paper aims to address these issues by developing a new method to automatically classify sleep stages in EEG signals. In this research, a robust method has been presented based on the clustering approach, coupled with probability distribution features, to identify six sleep stages with the use of EEG signals. Using this method, each 30-second EEG signal is firstly segmented into small epochs and then each epoch is divided into 60 sub-segments. Each sub-segment is decomposed into five levels by using a discrete wavelet transform (DWT) to obtain the approximation and detailed coefficient. The wavelet coefficient of each level is clustered using the k-means algorithm. Subsequently, features are extracted based on the probability distribution for each wavelet coefficient. The extracted features then are forwarded to the least squares support vector machine classifier (LS-SVM) to identify sleep stages. Comparisons with several existing methods are also made in this study. The proposed method for the classification of the sleep stages achieves an average accuracy rate of 97.4%. It can be an effective tool for sleep stages classification and can be useful for doctors and neurologists for diagnosing sleep disorders.


Electroencephalography , Sleep , Electroencephalography/methods , Sleep Stages , Probability , Algorithms , Cluster Analysis
2.
Brain Res ; 1779: 147777, 2022 03 15.
Article En | MEDLINE | ID: mdl-34999060

The detection of epileptic seizures from electroencephalogram (EEG) signals is traditionally performed by clinical experts through visual inspection. It is a long process, is error prone, and requires a highly trained expert. In this research, a new method is presented for seizure classification for EEG signals using a dual-tree complex wavelet transform (DT-CWT) and fast Fourier transform (FFT) coupled with a least square support vector machine (LS-SVM) classifier. In this method, each EEG signal is divided into four segments. Each segment is further split into smaller sub-segments. The DT-CWT is applied to decompose each sub-segment into detailed and approximation coefficients (real and imaginary parts). The obtained coefficients by the DT-CWT at each decomposition level are passed through an FFT to identify the relevant frequency bands. Finally, a set of effective features are extracted from the sub-segments, and are then forwarded to the LS-SVM classifier to classify epileptic EEGs. In this paper, two epileptic EEG databases from Bonn and Bern Universities are used to evaluate the extracted features using the proposed method. The experimental results demonstrate that the method obtained an average accuracy of 97.7% and 96.8% for the Bonn and Bern databases, respectively. The results prove that the proposed DT-CWT and FFT based features extraction is an effective way to extract discriminative information from brain signals. The obtained results are also compared to those by k-means and Naïve Bayes classifiers as well as with the results from the previous methods reported for classifying epileptic seizures and identifying the focal and non-focal EEG signals. The obtained results show that the proposed method outperforms the others and it is effective in detecting epileptic seziures in EEG signals. The technique can be adopted to aid neurologists to better diagnose neurological disorders and for an early seizure warning system.


Algorithms , Cerebral Cortex/physiopathology , Electroencephalography/methods , Epilepsy/diagnosis , Seizures/diagnosis , Signal Processing, Computer-Assisted , Adult , Electroencephalography/standards , Fourier Analysis , Humans , Wavelet Analysis
3.
Neurosci Res ; 172: 26-40, 2021 Nov.
Article En | MEDLINE | ID: mdl-33965451

Sleep scoring is one of the primary tasks for the classification of sleep stages using electroencephalogram (EEG) signals. It is one of the most important diagnostic methods in sleep research and must be carried out with a high degree of accuracy because any errors in the scoring in the patient's sleep EEG recordings can cause serious problems. The aim of this research is to develop a new automatic method for detecting the most important characteristics in sleep stage 2 such as k-complexes based on multi-domain features. In this study, each EEG signal is divided into a set of segments using a sliding window technique. Based on extensive experiments during the training phase, the size of the sliding window is set to 0.5 s (s). Then a set of statistical, fractal, frequency and non-linear features are extracted from each epoch based on the time domain, Katz's algorithm, power spectrum density (PSD) and tunable Q-factor wavelet transform (TQWT). As a result, a vector of twenty-two features is obtained to represent each EEG segment. In order to detect k-complexes, the extracted features were analysed for their ability to detect the k-complex waveforms. Based on the analysis of the features, twelve out of twenty-two features are selected and forwarded to a least square support vector machine (LS-SVM) classifier to identify k-complexes in EEG signals. A set of various classification techniques of K-means and extreme learning machine classifiers are used to compare the obtained results and to evaluate the performance of the proposed method.The experimental results showed that the proposed method, based on multi-domain features, achieved better recognition results than other methods and classifiers. An average accuracy, sensitivity and specificity of 97.7 %, 97 %, and 94.2 % were obtained, respectively, with the CZ-A1 channel according to the R&K standard. The experimental results with high classification performance demonstrated that the technique can help doctors optimize the diagnosis and treatment of sleep disorders.


Electroencephalography , Support Vector Machine , Algorithms , Humans , Least-Squares Analysis , Signal Processing, Computer-Assisted , Sleep Stages , Wavelet Analysis
4.
Neuroscience ; 422: 119-133, 2019 12 01.
Article En | MEDLINE | ID: mdl-31682947

K-complexes are important transient bio-signal waveforms in sleep stage 2. Detecting k-complexes visually requires a highly qualified expert. In this study, an efficient method for detecting k-complexes from electroencephalogram (EEG) signals based on fractal and frequency features coupled with an ensemble model of three classifiers is presented. EEG signals are first partitioned into segments, using a sliding window technique. Then, each EEG segment is decomposed using a dual-tree complex wavelet transform (DT-CWT) to a set of real and imaginary parts. A total of 10 sub-bands are used based on four levels of decomposition, and the high sub-bands are considered in this research for feature extraction. Fractal and frequency features based on DT-CWT and Higuchi's algorithm are pulled out from each sub-band and then forwarded to an ensemble classifier to detect k-complexes. A twelve-feature set is finally used to detect the sleep EEG characteristics using the ensemble model. The ensemble model is designed using a combination of three classification techniques including a least square support vector machine (LS-SVM), k-means and Naïve Bayes. The proposed method for the detection of the k-complexes achieves an average accuracy rate of 97.3 %. The results from the ensemble classifier were compared with those by individual classifiers. Comparisons were also made with existing k-complexes detection approaches for which the same datasets were used. The results demonstrate that the proposed approach is efficient in identifying the k-complexes in EEG signals; it yields optimal results with a window size 0.5 s. It can be an effective tool for sleep stages classification and can be useful for doctors and neurologists for diagnosing sleep disorders.


Brain Waves , Electroencephalography/methods , Fractals , Models, Neurological , Wavelet Analysis , Bayes Theorem , Databases, Factual , Humans , Sleep Stages , Support Vector Machine
5.
Front Neuroinform ; 13: 45, 2019.
Article En | MEDLINE | ID: mdl-31316365

K-complexes identification is a challenging task in sleep research. The detection of k-complexes in electroencephalogram (EEG) signals based on visual inspection is time consuming, prone to errors, and requires well-trained knowledge. Many existing methods for k-complexes detection rely mainly on analyzing EEG signals in time and frequency domains. In this study, an efficient method is proposed to detect k-complexes from EEG signals based on fractal dimension (FD) of time frequency (T-F) images coupled with undirected graph features. Firstly, an EEG signal is partitioned into smaller segments using a sliding window technique. Each EEG segment is passed through a spectrogram of short time Fourier transform (STFT) to obtain the T-F images. Secondly, the box counting method is applied to each T-F image to discover the FDs in EEG signals. A vector of FD features are extracted from each T-F image and then mapped into an undirected graph. The structural properties of the graphs are used as the representative features of the original EEG signals for the input of a least square support vector machine (LS-SVM) classifier. Key graphic features are extracted from the undirected graphs. The extracted graph features are forwarded to the LS-SVM for classification. To investigate the classification ability of the proposed feature extraction combined with the LS-SVM classifier, the extracted features are also forwarded to a k-means classifier for comparison. The proposed method is compared with several existing k-complexes detection methods in which the same datasets were used. The findings of this study shows that the proposed method yields better classification results than other existing methods in the literature. An average accuracy of 97% for the detection of the k-complexes is obtained using the proposed method. The proposed method could lead to an efficient tool for the scoring of automatic sleep stages which could be useful for doctors and neurologists in the diagnosis and treatment of sleep disorders and for sleep research.

...